Search results for "piezoelectric actuator"

showing 8 items of 8 documents

Numerical Analysis of Piezoelectric Active Repair in the Presence of Frictional Contact Conditions

2013

The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures …

EngineeringComposite numberlcsh:Chemical technologySmart materialBiochemistryArticleAnalytical Chemistryboundary element methodmedicinelcsh:TP1-1185Electrical and Electronic EngineeringSettore ING-IND/04 - Costruzioni E Strutture AerospazialiInstrumentationBoundary element methodbusiness.industryDelaminationStiffnessFracture mechanicspiezoelectric actuatorStructural engineeringShape-memory alloyfrictional contactPiezoelectricityAtomic and Molecular Physics and Opticsactive repairspring modelmedicine.symptombusinessSensors
researchProduct

On the dynamic behavior of piezoelectric active repair by the boundary element method

2011

The dynamic behavior of piezoelectric active repair bonded on cracked structures is analyzed in this article. The boundary element code used to perform the simulations is implemented in the framework of piezoelectricity in order to model the coupling between the elastic and the electric fields, which represents the most important feature of piezoelectric media. The fracture mechanics problem, i.e. the crack, as well as the bonding layer between the host structure and the active patch is modeled by means of the multidomain technique provided with an interface spring model. More particularly, the spring interface model allows considering the bonding layer as a zero-thickness elastic ply char…

Engineeringbusiness.industryMechanical Engineeringmedia_common.quotation_subjectStiffnessFracture mechanicsMechanicsStructural engineeringInertiaPiezoelectricityElectric fieldReciprocity (electromagnetism)medicineGeneral Materials Sciencemedicine.symptomTangential stiffnessbusinessactive repair boundary element method piezoelectric actuator fracture mechanics transient analysis dual reciprocity methodSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodmedia_common
researchProduct

Realization and drive tests of active thin glass x-ray mirrors

2016

A technique to obtain lightweight and high-resolution focusing mirror segments for large aperture X-ray telescopes is the hot slumping of thin glass foils. In this approach, already successfully experimented to manufacture the optics of the NuSTAR X-ray telescope, thin glasses are formed at high temperature onto a precisely figured mould. The formed glass foils are subsequently stacked onto a stiff backplane with a common axis and focus to form an XOU (X-ray Optical Unit), to be later integrated in the telescope optic structure. In this process, the low thickness of the glass foils guarantees a low specific mass and a very low obstruction of the effective area. However, thin glasses are sub…

Materials sciencebusiness.industryAntenna apertureActive opticsX-ray telescopePiezoelectricitySettore ING-INF/01 - Elettronicalaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawAngular resolutionFocus (optics)ActuatorbusinessX-ray mirrors active optics thin glass mirrors piezoelectric actuators
researchProduct

Electrical connections and driving electronics for piezo-actuated x-ray thin glass optics

2016

Use of thin glass modular optics is a technology currently under study to build light, low cost, large area X-ray telescopes for high energy astrophysics space missions. The angular resolution of such telescopes is limited by local deviations from the ideal shape of the mirrors. One possible strategy to improve it consists in actively correcting the mirror profile by gluing thin ceramic piezo-electric actuators on the back of the glasses. A large number of actuators, however, requires several electrical connections to drive them with the different needed voltages. We have developed a process for depositing conductive paths directly on the back of non-planar thin foil mirrors by means of a p…

Materials sciencebusiness.industryX-ray telescopeModular designSettore ING-INF/01 - ElettronicaActive X-ray optics thin glass optics piezoelectric actuators piezoelectric multichannel drivers interconnections patterning X-ray telescope mirrors.Settore FIS/05 - Astronomia E AstrofisicaOpticsvisual_artvisual_art.visual_art_mediumOptoelectronicsElectronicsCeramicThin filmbusinessActuatorElectrical conductorVoltage
researchProduct

Manufacturing an active X-ray mirror prototype in thin glass

2015

Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported he…

Nuclear and High Energy PhysicsMaterials scienceactive optic02 engineering and technologyactive optics; piezoelectric actuators; thin glass mirrors; X-ray mirrors; Instrumentation; Nuclear and High Energy Physics; RadiationSettore ING-INF/01 - Elettronica01 natural sciencesSignallaw.invention010309 opticsSettore FIS/05 - Astronomia E AstrofisicaOpticslaw0103 physical sciencesInstrumentationNuclear and High Energy PhysicRadiationbusiness.industrypiezoelectric actuatorthin glass mirrorActive optics021001 nanoscience & nanotechnologyLaserPiezoelectricitySynchrotronPhotolithography0210 nano-technologyActuatorbusinessX-ray mirrorVoltageJournal of Synchrotron Radiation
researchProduct

Optimal Design of Piezoelectric Cantilevered Actuators for Charge-Based Self-Sensing Applications

2019

Charge-based Self-Sensing Actuation (SSA) is a cost and space-saving method for accurate piezoelectric based-actuator positioning. However, the performance of its implementation resides in the choice of its geometry and the properties of the constituent materials. This paper intends to analyze the charge-based SSA&rsquo

Optimal design0209 industrial biotechnologyCantileverComputer sciencemicro-/nano-robotsMultiphysics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]designMechanical engineering02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistryArticle[SPI.AUTO]Engineering Sciences [physics]/AutomaticAnalytical Chemistry020901 industrial engineering & automation0103 physical scienceslcsh:TP1-1185Electrical and Electronic EngineeringInstrumentation010302 applied physicsself-sensing actuationFunction (mathematics)PiezoelectricityAtomic and Molecular Physics and OpticsComputer Science::OtherParametric modelActuatoroptimizationpiezoelectric actuators and sensorsSensors
researchProduct

Manufacturing and testing a thin glass mirror shell with piezoelectric active control

2015

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto t…

Physics - Instrumentation and DetectorsMaterials scienceactive opticFOS: Physical sciencesMechanical engineeringpiezoelectric actuatorthin glass mirrorInstrumentation and Detectors (physics.ins-det)Settore ING-INF/01 - ElettronicaPiezoelectricitySignallaw.inventionPrinted circuit boardSettore FIS/05 - Astronomia E AstrofisicalawFocal lengthAngular resolutionPhotolithographyX-ray mirrorsAstrophysics - Instrumentation and Methods for AstrophysicsActuatorInstrumentation and Methods for Astrophysics (astro-ph.IM)VoltageSPIE Proceedings
researchProduct

A multichannel piezo driver for active mirrors in X-ray telescopes

2016

X-ray astronomy is gaining importance for studying X-ray space sources such as single and binary stars, neutron stars, supernovae and black holes. Due to atmospheric absorption, X-ray telescopes must operate in space on satellites. Among the causes limiting the resolution of modern telescopes are distortions in mirrors shape. An innovative approach for X-ray mirrors aims at correcting the shape errors by means of piezo-ceramic actuators glued to the back of the mirrors, thus creating an “active mirror”. In order to test the viability of shape correction, we fabricated [1] a prototype of a thin glass active mirror, sized 20 cm x 20 cm with a 400 um thickness (Fig. 1). The mirror can allocate…

Settore FIS/05 - Astronomia E AstrofisicaX-ray mirrors active optics thin glass mirrors piezoelectric actuatorsSettore ING-INF/01 - Elettronica
researchProduct